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Abstract—Plate models developed on the basis of the three-dimensional elasticity theory are crucial
to the correct solutions in dynamics problems. In a three-dimensional setting, there exist numerous
possible definitions of boundary conditions. This paper attempts to identify the variance of three-
dimensional simple support conditions existing in practice. The hard simple support condition
assumes vanishing normal stresses at the edges and zero transverse and tangential displacement at
the peripheries. The soft simple support, on the other hand, imposes zero transverse displacement
with vanishing normal and shear stresses at the boundaries. To quantify the relative effects of each
boundary condition on the vibratory responses of thick plates, a global three-dimensional Ritz
formulation is employed for analysis. This technique uses sets of finite polynomial series in Cartesian
co-ordinates to approximate the global normal mode variations of the plate. These separable one-
dimensional polynomials are orthogonally generated within the plate domain such that all the
essential edge conditions are identically satisfied. The accuracy of the proposed three-dimensional
Ritz method is assured from the convergence and comparison studies. Numerical experiments have
been conducted to study firstly, the effects of geometric parameters on the overall normal mode
characteristics of simply supported plates ; and secondly, the effects of in-plane inertia on the
vibration frequencies of plates with different thicknesses. The three-dimensional deformed mode
shapes for selected cases have also been computed. These have served to describe more vividly the
normal mode characteristics of different types of simply supported rectangular plates.

1. INTRODUCTION

To achieve accurate and correct solutions to the static and dynamics problems in mechanics
requires the use of three-dimensional elasticity theory. Prominent researchers such as
Srinivas and Rao (1970), Srinivas (1972), Wittrick (1987) and Hutchinson and Zillmer
(1983) have demonstrated the importance of three-dimensional elasticity solutions in pro-
viding benchmark references to the various refined theories and the existing finite element
codes. Savoia and Reddy (1992), using a layer-wise three-dimensional elasticity formu-
lation, have uncovered several interesting properties of cross-ply and angle-ply laminated
plates under transverse loading. Hutchinson (1981), on the other hand, by comparing
his three-dimensional frequency solutions with the Timoshenko beam approximations at
different shear correction factors, was able to probe in-depth the influence of the shear
coeflicient on the dynamics properties of beams of different sizes. These and several emerging
researches (Liew et al., 1993, 1994, 1995a,b, 1996) in this direction, have pointed con-
vincingly to the comparative advantages of three-dimensional elasticity formulation for
problems in engineering mechanics.

In a three-dimensional setting, there exist numerous possible definitions of boundary
conditions. In this paper, we attempt to identify the variance of the three-dimensional
simple support conditions existing in practice. The hard simple support condition presumes
vanishing normal stresses at the edges and zero transverse and tangential displacements at
the peripheries. The soft simple support condition, on the other hand, imposes zero trans-
verse displacement with vanishing normal and shear stresses at the edges. These two sets
of simple support conditions address some of the most commonly encountered support
conditions in engineering practice.
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In this study, the influence of geometric parameters on the normal mode characteristics
of simply supported plates is investigated. Particular attention is drawn to the influence of
in-plane inertia on the vibration frequencies of both thin and thick plates. These solutions
may serve to establish the panel flutter behaviours of aerodynamic bodies, the resonant
responses of critical machine components and the periodic load bearing capability of civil
engineering structures.

In order to obtain solutions for the above studies, an accurate and efficient three-
dimensional Ritz algorithm is developed for the analysis. The method uses a linear, small-
strain, three-dimensional elasticity theory and the Ritz minimum energy principle to derive
the governing eigenvalue equation. The surface and thickness variations in three dimensions
are approximated in this case by sets of one-dimensional finite polynomial series. These
functions are orthogonally generated and have been proven to be highly efficient and
accurate in many numerical applications (Lam and Hung, 1990). The technique yields
natural frequencies and deflection mode shapes for thick rectangular plates. These results
aim to establish better normal mode characterizations of plates with hard and soft simple
support conditions. The influence of in-plane inertia on the vibration response of plates at
different thickness ratios can also be deduced from this study.

2. THEORETICAL FORMULATION

2.1. Preliminary definitions

Figure 1 shows a thick, homogeneous, isotropic rectangular plate of uniform thickness,
h. The plate dimensions are defined on a right-handed orthogonal co-ordinate system
(x1, X5, X3) with the origin at the geometric centre of the plate. The reference plane containing
x, and x, lies symmetrically between the top and bottom surfaces of the plate. The plate
domain is bounded by —a/2 < x;<a/2, —-b2<x,<b/2 and —h2< x; < hf2. At a
general point, the spatial displacement is resolved into the in-plane (u,, #,) and out-of-plane
(u;) components, respectively. The plates treated in this paper are assumed to be stress free
at the top and bottom surfaces.

2.2. Energy functional in three-dimensional space
The strain energy in a three-dimensional setting has the following form (Hung et al.,
1994) :

X3

B

Fig. 1. Dimension and geometry of a thick rectangular plate.
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where (), = 0()/0x; and the Lamé constants, 1" and G (shear modulus), are defined as
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where E is the modulus of elasticity and v is the Poisson ratio.
The maximum kinetic energy, on the other hand, is given by

2
Tmax=£czo—f‘”Ui2 dv; i=1,2,3 3)

in which p is the mass density per unit volume and w is the angular frequency.
The energy functional consisting of the maximum strain and kinetic energies is defined
as

= Vmax - Tmax- (4)

3. METHOD OF SOLUTION

3.1. Governing eigenvalue equation
The displacement amplitude functions in eqns (1) and (3) are assumed in the following
forms

. 1§1 Crirml i¢m(xl)i¢n(x2)i¢l(x3), i= 1’ 2, 3. (5)

1=

M
Ui:mgln

In the above expression, C;,,, are the undetermined coefficients and ‘¢(x,), ‘9 (x,), ‘¢ (xs),
are the corresponding one-dimensional polynomial functions for the surface and thickness
variations of the plate.

Expanding eqn (4) according to eqns (1)—(3) and (5) gives the energy functional which
is minimized according to the Ritz principle

71 B
a Crimtl

=0; i=123 (6)

to yield the following linear eigenvalue equation in three dimensions:
K—-Q*M){C} = {0} )

where {C} = {C' C* C*}T are the eigenvectors and Q = wa(p/E)'?, the corresponding
eigenvalues.
The global stiffness K and mass M matrices have the following forms
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The products of integrals in eqns (9a-i) are given by
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where the variables, %,, %, and £, in the above integrations are non-dimensionalized ;
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3.2. Admissible displacement functions
The one-dimensional polynomial based displacement functions are intrinsically the
products of (i) a basic function chosen to satisfy the essential geometric boundary conditions
of the plate ; and (ii) a mathematically complete one-dimensional polynomial space. These
functions are constructed from the Gram-Schmidt recurrence formula (Chihara, 1978).
For P, (%) e {'¢(%) ; i = 1,2,3} and x € {X,, X,, X,}, the recurrence process gives

P (%) = {g(X) —E{} Pu(R) —EP1 (R) ; k=1,2,3... (12)

The polynomial P,(%) is defined as zero and the constants Z; and E¢ are chosen such that
the polynomials generated in eqn (12) satisfy the orthogonality condition :

Y h@p@azr= I (13)
m( X)L (X) AX = . .
~0.5 0 ifm#n
The value of A,,, depends on the normalization used.
From the recurrence relation of eqn (12) and considering eqn (13), we have
E = AY/AS (14a)
EP = A3/A57! (14b)
with
0.5
At = 9(R)P; (%) dx (15a)
J—0.5
0.5
Af = Pi(%) dx (15b)
J—0.35
0.5
A = P (%) dx (15¢)
J—0.5

and g(%), the generating function in eqn (12), is chosen for the higher terms to satisfy the
essential geometric boundary conditions.

The boundary conditions of the plate are uniquely satisfied by the basic functions,
‘¢,(%). In addition, these functions also take into account the symmetry inherent in the
mode shapes for rectangular planform so as to reduce the determinant size of the eigenvalue
equation. In this study, two types of simple support conditions and four distinct classes of
symmetry modes are considered. These are discussed in the following section.

(a) Hard simple support. The hard simple support condition assumes vanishing normal
stresses at the edges and zero transverse and tangential displacements at the peripheries :

6,=0, u,=0 and u, =0. (16a)

This is translated into the following kinematic constraints to be satisfied by the displacement
amplitude functions at the edges

SAS 31:23-E
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Table 1(a). The basic function in the %, direction for the two types of simple supports

Boundary condition So(®) Jdx)
Hard simple support at both ends ‘(%) = %, ‘(%) = 1.0
(6, =0, 4, = 0 and u, = 0) 2%,(%,) = £ —0.25%, 26,(%,) = £—0.25
‘¢i(%) = 51 -0.25%, (%) = H-0.25
Soft simple support at both ends '$(x) =% ‘(%) =10
(6,=0,0,=0and u; = 0) 2i(%) = %, (%) = 1.0
*$i(%)) = %}—0.25%, Spu(x) = %{—0.25

Table 1(b). Basic functions for U,, U,, U; components at each symmetry class

Symmetry Ul(.f], X fg) Uz(xl, X3 23) US(xh X3, )_‘3)
class '6,(%,) (%) (%)) 21(%2) i) SPi(%)
SS fo fe Je fo fe L
SA fo fo I fe fe fo
AS fe fe Jo fo fo f
AA f fo Jo fe fo L

Generating function g(%, ; %) = (53; £3)

U=0; U,#0 and U, =0. (16b)

(b) Soft simple support. The soft simple support condition imposes zero transverse
displacement with vanishing normal and shear stresses at the boundaries :

6,=0, 0,=0 and u;=0. (17a)
In terms of displacement amplitude functions this is expressed as
U#0; U,#0 and U, =0. (17b)

(c) Symmetry classes. The basic functions are grouped into four symmetry classes
about the x,x;-plane and the x,x;-plane in order to maximize the computational efficiency.
Tables 1(a) and 1(b) summarize the symmetry classes and the corresponding basic and
generating functions used for each type of simple support conditions. In Table 1(b),
the symbols SS, SA, AS and AA denote symmetry—symmetry, symmetry—-antisymmetry,
antisymmetry—symmetry and antisymmetry—antisymmetry modes about the x;x;- and x;x;-
planes, respectively. In the Ritz formulation, it is sufficient to choose basic functions that
satisfy only the essential geometric boundary conditions of the plate.

Additional saving in terms of computational time and storage space can be achieved
by further dividing the aforementioned symmetry modes into the symmetric thickness
modes and the antisymmetric thickness modes. For symmetric thickness modes, the basic
functions in the thickness direction for each displacement component are

I (%) =10, j=12 and *¢,(%;) = %;. (18)
For the antisymmetric thickness modes, the corresponding basic functions are
i$ (%) =%, j=1,2 and ’¢,(%;) =1.0. 19

For both cases, the generating function g(%;) is taken to be %3.
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4. RESULTS AND DISCUSSION

Frequency results for plates with two types of simple supports have been computed.
These serve to establish the dynamics behaviour of plates with different boundary conditions
and dimensions. The frequency parameter is expressed in the non-dimensionalized form as

A = (wb?/n?)(ph/ D) (20)

where D = ER*/12(1 —v?) is the flexural rigidity often used for plate analysis.

4.1. Convergence characteristics

To establish the degrees of accuracy of the solutions, convergence tests have been
carried out for plates with hard and soft simple support conditions. Tables 2(a) and 2(b)
show the variation of frequency parameters, 4, at each polynomial degree set. It is observed
that the frequency parameters, A, converge to four significant figures at a polynomial degree
set of 6 x 6 x4 (determinant size of 432) for the thin (A/b = 0.01) and thick (h/b = 0.25)
plates, respectively. Both the hard and soft simply supported plates require approximately
the same number of terms in the deflection series for converged solutions. This speedy
convergence is possible through the use of various symmetry considerations in the present
method.

4.2. Influence of geometric parameters and boundary conditions

Table 3 quantifies the relative effects of plate thickness ratio (4/b) and different simple
support conditions on the normal mode frequencies of rectangular plates. The plate thick-
ness ratios are assumed at 0.01, 0.1, 0.25 and 0.5, respectively. It is observed that the
increase in the thickness ratio leads to lowering of the frequency parameters for both hard
and soft simply supported plates. A closer scrutiny of Table 3 shows that at small thickness
ratio (h/b = 0.01), the frequencies are in good agreement for both types of simple supports.
The deviation, however, widens as the thickness ratio increases and the through thickness
contributions to stiffness and inertia become significant. This observation agrees well with
those reported by Babuska and Li (1992). They have provided various theorems to prove
that as the thickness becomes negligible, the discrepancy between the hard and soft supports
disappears.

There are other mechanical attributes which follow the thickening of plates. It is
observed that, as the plate thickness increases, the symmetric thickness modes (which exhibit
predominant surface parallel motions) become dominant. For thin plate (/6 = 0.01), on
the other hand, the antisymmetric thickness modes (which are predominantly out-of-plane
motions) dominate in the lower vibration spectrum. To characterize more vividly the
normal mode behaviours of these simply supported plates, three-dimensional mode shapes
at each thickness ratio are presented in Figs 2 and 3 for hard and soft simply supported
plates, respectively. The presence of surface parallel, symmetric thickness modes in the
lower vibration spectrum for thick plates is evident in these diagrams. These surface parallel
modes at the lower vibration spectrum restrict the applicability of the refined plate theory
such as the Mindlin theory to the analysis of moderately thick plate. Since the first order
Mindlin theory only considers flexural modes and in this study, it is found that the symmetric
thickness modes (which include thickness shear, thickness twist and pure in-plane motions)
often precede some of the flexural modes in thick plate vibrations.

4.3. Influence of in-plane inertia on frequencies

A numerical experiment is carried out to examine the influence of in-plane inertia on
the normal modes of simply supported plates. This is done by eliminating the in-plane
(1, u,) contributions to the kinetic energy expression.



Table 2(a). Convergence of frequency parameters, A = wd’/n*(ph/D)'?, for a square plate with hard simple support condition (v = 0.3)

Symmetry class and mode number

Thickness No. of terms
ratio, h/b LxMxN SS-1 §S-2 SS-3 SA-1 SA-2 SA-3 AA-1 AA-2 AA-3
(a) Antisymmetric thickness modes
0.01 4x4x3 1.9993 9.9847 9.9847 4.9957 12.972 17.625 7.9889 20.555 20.555
Sx5x4 1.9993 9.9826 9.9826 4.9956 12.971 16.971 7.9888 19.950 19.950
5x5x5 1.9993 9.9826 9.9826 4.9956 12.971 16.971 7.9888 19.950 19.950
6x6x4 1.9993 9.9826 9.9826 4.9956 12.971 16.950 7.9888 19.931 19.931
TxTx4 1.9993 9.9826 9.9826 4.9956 12.971 16.950 7.9888 19.930 19.930
0.25 4x4x3 1.6830 5.8959 5.8959 3.5524 7.0502 8.5263 5.0359 9.4121 9.4121
5x5x4 1.6830 5.8952 5.8952 3.5524 7.0497 8.4110 5.0359 9.3274 9.3274
5x5x%xS5 1.6830 5.8952 5.8952 3.5524 7.0497 8.4110 5.0359 9.3274 9.3274
6x6x4 1.6830 5.8952 5.8952 3.5524 7.0497 8.4072 5.0359 9.3246 9.3246
Tx7Tx4 1.6830 5.8952 5.8952 3.5524 7.0497 8.4072 5.0359 9.3246 9.3246
(b) Symmetric thickness modes
0.25 4x4x3 3.6902 6.1720 8.2522 2.6094 5.8348 7.8282 5.2187 5.2187 7.3806
Sx5x4 3.6902 6.1720 8.2515 2.6094 5.8347 7.8281 5.2187 5.2187 7.3804
5x5x%5 3.6902 6.1720 8.2515 2.6094 5.8347 7.8281 5.2187 5.2187 7.3804
6x6x4 3.6902 6.1720 8.2515 2.6094 5.8347 7.8281 5.2187 5.2187 7.3804
TxTx4 3.6902 6.1720 8.2515 2.6094 5.8347 7.8281 5.2187 5.2187 7.3804

(743
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Table 2(b). Convergence of frequency parameters, 2 = wb?/n(ph/D)"'?, for a square plate with soft simple support condition (v = 0.3)

Symmetry class and mode number

Thickness No. of terms
ratio, h/b LxMxN SS-1 SS-2 SS-3 SA-1 SA-2 SA-3 AA-1 AA-2 AA-3
(a) Antisymmetric thickness modes
0.01 4x4x3 1.9975 10.022 10.022 4.9925 13.027 17.620 7.9810 20.538 20.538
5x5x4 1.9967 9.9789 9.9790 49910 12.957 16.966 7.9770 19.931 19.931
5x5x%x5 1.9967 9.9789 9.9790 49910 12.957 16.966 7.9770 19.931 19.931
6x6x4 1.9957 9.9759 9.9759 4.9895 12.949 16.943 7.9727 19.905 19.905
Tx7x4 1.9947 9.9741 9.9741 4.9878 12.943 16.940 7.9684 19.898 19.898
8x8x4 1.9936 9.9722 9.9722 4.9862 12.938 16.939 7.9643 19.891 19.891
Ix9Ix4 1.9927 9.9706 9.9707 4.9848 12.933 16.937 7.9609 19.886 19.886
0.25 4x4x3 1.5708 5.7930 5.8283 3.4366 6.8599 8.4534 4.8327 9.2040 9.2815
S5x5%x4 1.5705 5.7916 5.8269 3.4361 6.8574 8.3419 4.8315 9.1284 9.1953
Sx5x%5 1.5705 5.7916 5.8269 3.4361 6.8574 8.3419 48315 9.1284 9.1953
6x6x4 1.5705 5.7916 5.8268 3.4361 6.8571 8.3381 48314 9.1252 9.1921
TxTx4 1.5705 5.7915 5.8267 3.4360 6.8570 8.3380 4.8313 9.1250 9.1920
8x8x4 1.5705 5.7915 5.8267 3.4360 6.8570 8.3380 4.8313 9.1250 9.1919
(b) Symmetric thickness modes
0.25 4x4x3 3.6902 4.2407 4.8202 3.4931 5.2362 7.0294 3.2605 6.0980 7.3806
Sx5x4 3.6902 4.2388 48197 3.4921 5.2356 7.0202 3.2604 6.0948 7.3804
S5x5x%x5 3.6902 4.2388 4.8197 3.4921 5.2356 7.0202 3.2604 6.0948 7.3804
6x6x4 3.6902 4.2381 4.8196 3.4918 5.2355 7.0195 3.2604 6.0941 7.3804
Tx7x4 3.6902 4.2378 4.8196 3.4917 5.2354 7.0192 3.2603 6.0938 7.3804
8x8x4 3.6902 42376 4.8195 3.4916 5.2354 7.0190 3.2603 6.0937 7.3804

sayed 1eM3urINal JO UOTIBIGIA [BUOISTSUIP-90IY |
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Table 3. Frequency parameters, 4 = wb?*/n*(ph/D)'?, for a square plate with different support conditions (v = 0.3)

Symmetry classes and mode sequence number

Thickness

hib SS-1 $S-2 SS-3 SA-1t SA-21 SA-3t AA-1 AA-2 AA-3
(a) Hard simple support condition (¢, = 0, u, = 0 and u; = 0)

0.01 1.9993 9.9826 9.9826 4.9956 12.971 16.950 7.9888.. 19.930 19.930

0.10 1.9342 8.6617 8.6617 4.6222 6.5234% 10.879 7.1030 13.047 § 13.047

0.25 1.6830 3.69021 5.8952 2.6094% 3.5524 5.8347% 5.0359 5.2187} 5.2187%

0.50 1.2590 1.8451% 2.9325¢ 1.30471 2.3312 2.9174¢ 2.60941 2.6094% 3.1080
(b) Soft simple support condition (6, = 0, 6, = 0 and u; = 0)

0.01 1.9927 9.9706 9.9707 4.9848 12.933 16.937 7.9609 19.886 19.886

0.10 1.8588 8.5535 8.5684 4.5155 8.6992% 10.597 6.8629 8.14761 15.163 §

0.25 1.5705 3.69021 4.2376% 3.4360 3.4916% 5.2354% 3.2603% 4.8313 6.0937}

0.50 1.1752 1.8451% 2.1373% 1.7538% 2.2533 2.6094 1.6312% 2.6094 2.9965

+ For a square plate with homogeneous boundary condition, the frequencies for SA and AS modes are identical.

{ Symmetric thickness modes (surface parallel motions).

(474
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Fig. 2. Three-dimensional mode shapes of a hard simply supported plate at different thickness ratios (§ symmetric thickness modes).
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The eigenvalue equation derived earlier can be rewritten in the following form :

K. K c {o}} .
[KLE K;;—QZM“]{G}_{{"} @D
where
I(ll K12
KA=|: ] (22a)
I(’11‘2 K22
K3
K; = [K23] (22b)
and
Cc?)} = c (22¢)
€= {a}

Equation (21) can be expanded as follows

K. {C"*} +K;{C’} = {0} (23)
KI{C"*} +(K;; —Q>M;;){C?} = {0}. (24)

From eqn (23), we have
{C?} = —K7'K{C}. (25)

Substituting eqn (25) into (24) results in a more condensed form of the eigenvalue equation
K-Q*M){C?} = {0}. (26)

The equivalent stiffness and mass matrices are given by

= —K;K; 'Kz +K;; (27a)
M;;. (27b)

2 »
I

The condensed eigenvalue equation is used to compute the frequency parameters for
the antisymmetric thickness modes. The in-plane inertia in these modes are analogous to
the rotary inertia effects in the Mindlin plate formulation. Figures 4 and 5 give the frequency
parameters obtained with and without considering the in-plane inertia. It is observed
that for small thickness ratios (#/b < 0.01), both approaches yield very similar frequency
solutions. In other words, the influence of in-plane inertia (or the rotary inertia in the
context of Mindlin plate theory) is not significant at small thickness dimensions. The
deviation began to widen as the plate thickness increased. This is predictable as these inertia
effects are believed to be more significant in the vibration of thick plates. Nevertheless, it is
deduced from Figs 4 and S that the frequency solutions obtained from eqn (26) are closer
to that obtained from eqn (7) for plates with thickness ratios A/b < 0.3. It is worth noting
that the determinant size in the condensed eigenvalue equation is only one-third of that of
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Fig. 4. Plots of frequency parameters versus thickness ratios for plates with hard simply supported
boundary conditions with and without consideration of in-plane inertia (* denotes maximum kinetic

energy).

the complete form as defined in eqn (7). This can be translated to more than 50.0% saving
in terms of the computational effort required for the extraction of frequency solutions.

5. CONCLUSIONS

A comprehensive study of the three-dimensional normal mode behaviours of simply
supported thick plates was presented. The global three-dimensional Ritz continuum
approach developed on the basis of a three-dimensional elasticity theory was employed for
solutions. In this study, we investigate the influence of both the hard and soft simple support
conditions upon the overall vibration responses of thick plates. A numerical experiment on
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Fig. 5. Plots of frequency parameters versus thickness ratios for plates with soft simply supported
boundary conditions with and without consideration of in-plane inertia (* denotes maximum kinetic
energy).




Three-dimensional vibration of rectangular plates 3247

the influence of in-plane inertia on the vibration frequencies was also carried out. Some
observations can be drawn directly from the present studies.

o The difference between the solutions for hard and soft simple support conditions becomes
negligible for thin plates. As the thickness increases, it is found that rectangular plates
with hard support conditions vibrate at higher natural frequencies.

o For thin plates, the antisymmetric thickness modes (which exhibit out-of-plane motions)
dominate the lower vibration spectrum for both hard and soft simply supported plates.
As the thickness increases, the symmetric thickness modes (which include thickness—
twist, thickness—shear and surface parallel motions) begin to precede some of the out-of-
plane modes.

e The determinant size of the eigenvalue problem can be significantly reduced by ignoring
the contributions of the in-plane components to the kinetic energy. The error resulting
from such a simplification is found to be small for plate with thickness ratio A/b < 0.30.
This error becomes significant only at higher modes and for thicker plates.
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